
WHY YOU SHOULD CARE ABOUT
DEPENDENCY INJECTION

An Introduction to Dependency Injection and IoC Containers

About Me

 Jeff Barnes

 .NET Software Craftsman @ DAXKO

 Microsoft MVP in Connected Systems

 ALT.NET Supporter

 jeff@jeffbarnes.net

 http://jeffbarnes.net/blog

 http://twitter.com/jeff_barnes

mailto:jeff@jeffbarnes.net
http://twitter.com/jeff_barnes
http://twitter.com/jeff_barnes
http://twitter.com/jeff_barnes
https://mvp.support.microsoft.com/profile=2191882D-4025-46C0-A92A-DD13252488FA

Disclaimer

I do not claim to be an expert in anything!

I’m here to simply share things that I have
learned about topics on which I am quite
passionate.

Question everything I say and form your own
opinions based on the information!

Agenda

 What is dependency injection?

 How does it work?

 Why would you want to use it?

 What is an IoC container?

 What does it buy you?

 How should you use it?

DI vs IoC Ƶ7ÈÁÔƦÓ ÔÈÅ $ÉÆÆơ

 Dependency Injection != Inversion of Control

 IoC is an abstract concept about inverting the flow
of control within an application/system

 The Hollywood Principle

ÀDon’t call us, we will call you.

 DI is a specific form of IoC

 Creation of dependencies is inverted

 The terms are often used interchangeably

So, what is DI?

 Rather than a class directly instantiating its
own dependencies, it is someone else’s
responsibility to provide the dependencies to
the given class.

 In a nutshell:

 It is all about externalizing dependencies and
coordinating how they are provided to a class

Why should you care?

 Reduces coupling

 Improves flexibility

 Improves testability and makes it easier to
use mocks for isolating the logic under test

How Does It Work?

 Open Closed Principle

 Dependency Inversion Principle

 Dependencies are provided to the given class

 Constructor Injection

 Field Injection

 Property Injection

 Method Injection

OCP Refresher

 According to Uncle Bob:

Classes should be open for extension, but
closed for modification.

DIP Refresher

 According to Uncle Bob:

High level modules should not depend upon
low level modules. Both should depend upon
abstractions.

Abstractions should not depend upon details.
Details should depend upon abstractions.

Without Dependency Injection

LoginService
Database

UserRepository

Sha256Hash

SecurityToken
Registry

SqlDatabase

SqlDatabase

SecurityToken
Registry

Sha256Hash

UserRepository

With Dependency Injection

LoginService
IUser

Repository

IHashStrategy

ISecurityToken
Registry

IDatabase

$ÅÅÐ $ÅÐÅÎÄÅÎÃÉÅÓ 3ÕÃËƛ

 When handled manually…

 Dependencies with deep hierarchies can be
painful for the caller to setup and supply to
the given class.

 How can we make this better:
 Poor Man’s Dependency Injection

 Service Locator

 IoC Container

0ÏÏÒ -ÁÎƦÓ $)

 Relies on default (empty) constructors that
chain to constructor overloads which accept
the required dependencies.

 Provides default dependencies with option to
override them by the caller.

 A step in the right direction, but still couples
the class to the dependencies

Service Locator

 Relies on a globally accessible class that can
be used to lookup the instance that should be
used for the given type.

 Gets the job done, but still not ideal.

 Necessitates some coupling

 Necessitates a dependency on the service locator

 Requires mocking the service locator in tests

IoC Container

 Separate component that is responsible for
maintaining all of the dependencies and their
corresponding lifecycles.

 The sweet spot, but comes with complexity:

 Requires bootstrapping/configuration

 Can be more difficult to see the big picture

 Makes dependency injection much easier (when
used correctly)

The Beauty of IoC Containers

Popular .NET IoC Containers

 StructureMap

 Castle Windsor / Microkernel

 Ninject

 Unity

 Spring.NET

 Autofac

 PicoContainer

IoC Container Dos and Donts

 Do

 Leverage your container near the top level

 Favor programmatic registration

 Put it to work *for* you

 Don’t

 Excessively use the container as a service locator

 Go crazy with XML configurations

 Put it to work *against* you

