
WHY YOU SHOULD CARE ABOUT
DEPENDENCY INJECTION

An Introduction to Dependency Injection and IoC Containers

About Me

 Jeff Barnes

 .NET Software Craftsman @ DAXKO

 Microsoft MVP in Connected Systems

 ALT.NET Supporter

 jeff@jeffbarnes.net

 http://jeffbarnes.net/blog

 http://twitter.com/jeff_barnes

mailto:jeff@jeffbarnes.net
http://twitter.com/jeff_barnes
http://twitter.com/jeff_barnes
http://twitter.com/jeff_barnes
https://mvp.support.microsoft.com/profile=2191882D-4025-46C0-A92A-DD13252488FA

Disclaimer

I do not claim to be an expert in anything!

I’m here to simply share things that I have
learned about topics on which I am quite
passionate.

Question everything I say and form your own
opinions based on the information!

Agenda

 What is dependency injection?

 How does it work?

 Why would you want to use it?

 What is an IoC container?

 What does it buy you?

 How should you use it?

DI vs IoC Ƶ7ÈÁÔƦÓ ÔÈÅ $ÉÆÆơ

 Dependency Injection != Inversion of Control

 IoC is an abstract concept about inverting the flow
of control within an application/system

 The Hollywood Principle

ÀDon’t call us, we will call you.

 DI is a specific form of IoC

 Creation of dependencies is inverted

 The terms are often used interchangeably

So, what is DI?

 Rather than a class directly instantiating its
own dependencies, it is someone else’s
responsibility to provide the dependencies to
the given class.

 In a nutshell:

 It is all about externalizing dependencies and
coordinating how they are provided to a class

Why should you care?

 Reduces coupling

 Improves flexibility

 Improves testability and makes it easier to
use mocks for isolating the logic under test

How Does It Work?

 Open Closed Principle

 Dependency Inversion Principle

 Dependencies are provided to the given class

 Constructor Injection

 Field Injection

 Property Injection

 Method Injection

OCP Refresher

 According to Uncle Bob:

Classes should be open for extension, but
closed for modification.

DIP Refresher

 According to Uncle Bob:

High level modules should not depend upon
low level modules. Both should depend upon
abstractions.

Abstractions should not depend upon details.
Details should depend upon abstractions.

Without Dependency Injection

LoginService
Database

UserRepository

Sha256Hash

SecurityToken
Registry

SqlDatabase

SqlDatabase

SecurityToken
Registry

Sha256Hash

UserRepository

With Dependency Injection

LoginService
IUser

Repository

IHashStrategy

ISecurityToken
Registry

IDatabase

$ÅÅÐ $ÅÐÅÎÄÅÎÃÉÅÓ 3ÕÃËƛ

 When handled manually…

 Dependencies with deep hierarchies can be
painful for the caller to setup and supply to
the given class.

 How can we make this better:
 Poor Man’s Dependency Injection

 Service Locator

 IoC Container

0ÏÏÒ -ÁÎƦÓ $)

 Relies on default (empty) constructors that
chain to constructor overloads which accept
the required dependencies.

 Provides default dependencies with option to
override them by the caller.

 A step in the right direction, but still couples
the class to the dependencies

Service Locator

 Relies on a globally accessible class that can
be used to lookup the instance that should be
used for the given type.

 Gets the job done, but still not ideal.

 Necessitates some coupling

 Necessitates a dependency on the service locator

 Requires mocking the service locator in tests

IoC Container

 Separate component that is responsible for
maintaining all of the dependencies and their
corresponding lifecycles.

 The sweet spot, but comes with complexity:

 Requires bootstrapping/configuration

 Can be more difficult to see the big picture

 Makes dependency injection much easier (when
used correctly)

The Beauty of IoC Containers

Popular .NET IoC Containers

 StructureMap

 Castle Windsor / Microkernel

 Ninject

 Unity

 Spring.NET

 Autofac

 PicoContainer

IoC Container Dos and Donts

 Do

 Leverage your container near the top level

 Favor programmatic registration

 Put it to work *for* you

 Don’t

 Excessively use the container as a service locator

 Go crazy with XML configurations

 Put it to work *against* you

