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Disclaimer

I do not claim to be an expert in anything!

I’m here to simply share things that I have 
learned about topics on which I am quite 
passionate.  

Question everything I say and form your own 
opinions based on the information!



Agenda

 What is dependency injection?

 How does it work?

 Why would you want to use it?

 What is an IoC container?

 What does it buy you?

 How should you use it?
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 Dependency Injection != Inversion of Control

 IoC is an abstract concept about inverting the flow 
of control within an application/system

 The Hollywood Principle

ÀDon’t call us, we will call you.

 DI is a specific form of IoC

 Creation of dependencies is inverted

 The terms are often used interchangeably 



So, what is DI?

 Rather than a class directly instantiating its 
own dependencies, it is someone else’s 
responsibility to provide the dependencies to 
the given class.

 In a nutshell:

 It is all about externalizing dependencies and 
coordinating how they are provided to a class



Why should you care?

 Reduces coupling

 Improves flexibility

 Improves testability and makes it easier to 
use mocks for isolating the logic under test



How Does It Work?

 Open Closed Principle

 Dependency Inversion Principle

 Dependencies are provided to the given class

 Constructor Injection

 Field Injection

 Property Injection

 Method Injection



OCP Refresher

 According to Uncle Bob:

Classes should be open for extension, but 
closed for modification.





DIP Refresher

 According to Uncle Bob:

High level modules should not depend upon 
low level modules.  Both should depend upon 
abstractions.

Abstractions should not depend upon details.  
Details should depend upon abstractions.





Without Dependency Injection
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 When handled manually…

 Dependencies with deep hierarchies can be 
painful for the caller to setup and supply to 
the given class.

 How can we make this better:
 Poor Man’s Dependency Injection

 Service Locator

 IoC Container
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 Relies on default (empty) constructors that 
chain to constructor overloads which accept 
the required dependencies.

 Provides default dependencies with option to 
override them by the caller.

 A step in the right direction, but still couples 
the class to the dependencies



Service Locator

 Relies on a globally accessible class that can 
be used to lookup the instance that should be 
used for the given type.

 Gets the job done, but still not ideal.

 Necessitates some coupling

 Necessitates a dependency on the service locator

 Requires mocking the service locator in tests



IoC Container

 Separate component that is responsible for 
maintaining all of the dependencies and their 
corresponding lifecycles.

 The sweet spot, but comes with complexity:

 Requires bootstrapping/configuration

 Can be more difficult to see the big picture 

 Makes dependency injection much easier (when 
used correctly)



The Beauty of IoC Containers



Popular .NET IoC Containers

 StructureMap

 Castle Windsor / Microkernel

 Ninject

 Unity

 Spring.NET

 Autofac

 PicoContainer



IoC Container Dos and Donts

 Do

 Leverage your container near the top level

 Favor programmatic registration

 Put it to work *for* you

 Don’t

 Excessively use the container as a service locator

 Go crazy with XML configurations

 Put it to work *against* you




